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Abstract

We review several of de Finetti’s fundamental contributions where these have
played and continue to play an important role in the development of imprecise
probability research. Also, we discuss de Finetti’s few, but mostly critical
remarks about the prospects for a theory of imprecise probabilities, given
the limited development of imprecise probability theory as that was known
to him.
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1. Introduction

Researchers approaching the theory of imprecise probabilities [IP] may
easily deduce that Bruno de Finetti’s ideas were influential for its develop-
ment.

Consider de Finetti’s foundational Foresight paper (1937), which is rightly
included in the first volume of the series Breakthroughs in Statistics [18]. In
that paper we find fundamental contributions to the now familiar concepts
of coherence of subjective probabilities – having fair odds that avoid sure
loss – and exchangeable random variables – where permutation symmetric
subjective probabilities over a sequence of variables may be represented by
mixtures of iid statistical probabilities. Each of these concepts is part of
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the active research agendas of many IP researchers. That is, we continue
to see advances in IP that are based on novel refinements of coherence, and
contributions to concepts of probabilistic independence as those relate also to
exchangeability. For instance, 7 of 47 papers in the Proceedings (2009) of the
6th ISIPTA - International Symposium on Imprecise Probability: Theories
and Applications include at least one citation of de Finetti’s work. And it is
not hard to argue that another 7, at least, rely implicitly on his fundamental
contributions.

Regarding the origins of modern studies on IP, consider for instance Wal-
ley’s book [48], nowadays probably the best known extensive treaty on im-
precise probabilities. Key concepts like upper and lower previsions, their
behavioural interpretation, the consistency notions of coherence and of pre-
visions that avoid sure loss, appear at once as generalizations of basic ideas
from de Finetti’s theory. In the preface to [48], Walley acknowledges that

‘My view of probabilistic reasoning has been especially influenced
by the writings of Terrence Fine, Bruno de Finetti, Jack Good,
J.M. Keynes, Glenn Shafer, Cedric Smith and Peter Williams’.

In their turn, most of these authors knew de Finetti’s theory, while Smith
[41] and especially Williams [51] were largely inspired by it. From this, and
noting also the many places in Walley’s book discussing de Finetti’s ideas
(see especially Sects. 2.1.4, 2.3.6, 5.7.1, 5.7.6, 6.8.4, 6.9.7, 9.5.6 in [48]), one
may easily infer the outstanding relevance of de Finetti’s thought in Walley’s
approach.

For another intellectual branch that has roots in de Finetti’s work, con-
sider contributions to IP from Philosophy. For example, Levi [28, 29] gener-
alizes de Finetti’s decision–theoretic concept of coherence through his rule of
E–admissibility applied with convex sets of credal probabilities and cardinal
utilities.

However, a closer look at de Finetti’s writings demonstrates that impre-
cise probabilities were a secondary issue in his work, at best. He did not
write very much about them. In fact, he was rather skeptical about devel-
oping a theory based on what he understood IP to be about. To understand
the incongruity between the incontrovertible fact that many IP researchers
recognize the origins for their work in de Finetti’s ideas but that de Finetti
did not think there was much of a future in IP, we must take into account
the historical context in the first half of the last century, and the essentially
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marginal role in the scientific community of the few papers known at the
time that treated imprecision by means of alternatives to precise probability.

Our note is organized as follows: In Section 2 we discuss de Finetti’s
viewpoint on imprecision. After reviewing some historical hints (Section
2.1), we summarize what we understand were de Finetti’s thoughts on IP
(Section 2.2). In Section 3 we respond to some of de Finetti’s concerns about
IP from the current perspective, i.e., using arguments and results that are
well known now but were not so at the earlier time. We review some key
aspects of the influence of de Finetti’s thought in IP studies in Section 4.
Section 5 concludes the paper.

2. Imprecise Probabilities in de Finetti’s Theory

2.1. A Short Historical Note

De Finetti published his writings over the years 1926–1983, and developed
a large part of his approach to probability theory in the first thirty years.
In the first decade (1926–1936) he wrote about seventy papers, the majority
on probability theory. At the beginning of his activity, measure–theoretic
probability was a relatively recent discipline attracting a growing number of
researchers. There was much interest in grounding probability theory and
its laws (Kolmogorov’s influential and measure–theoretic approach to prob-
ability was published in 1933), and few thought of other ways of quantifying
uncertainty. Yet, alternatives to probability had already been explored: even
in 1713, more or less at the origins of probability as a science, J. Bernoulli
considered non-additive probabilities in Part IV of his Ars Conjectandi, but
this aspect of his work was essentially ignored (with the exception of J.H.
Lambert, who derived a special case of Dempster’s rule in 1764 ([37], p. 76)).
Other questions which play an important role in de Finetti’s work, but not
in the standard measure–theoretic approach, had been investigated by G.
Boole [2]; see especially the logical rather than set–theoretic interpretation
of events and the analysis of the probability bounds induced on additional
events by a probability assessment.

In the time between Bernoulli’s work and the sixties of last century, some
researchers were occasionally concerned with imprecise probability evalua-
tions, but generally as a collateral problem in their approaches. Among
them, de Finetti quotes (in [16], p. 133, and [17]) B.O. Koopman and I.J.
Good, asserting that the introduction of numerical values for upper and lower
probabilities was a specific follow–up of older ideas by J.M. Keynes [26].
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Starting from the sixties, works focusing on various kinds of imprecise
probabilities appeared with slowly increasing frequency. Their authors orig-
inally explored different areas, including non-additive measures (Choquet,
whose monograph [3] remained virtually unknown when published in 1954
and was rediscovered several years later), Statistics [9], Philosophy [27, 28,
42, 47], robustness in statistics [24, 25], belief functions [37]. See e.g. [22] for
a recent historical note.

Among these, de Finetti certainly read two papers which referred to his
own approach, [41] and [51]. While Smith’s paper [41] was still a transition
work, Williams’ [51] technical report stated a new, in-depth theory of impre-
cise conditional previsions, which generalized de Finetti’s betting scheme to
a conditional environment, proving important results like the envelope the-
orem. Consider that at the time (1975) the theory of conditional (precise)
previsions was not fully developed yet, and never was by de Finetti: papers
on this appeared only some ten years later [23, 35]. Thus Williams produced
ideas that could be, and actually are from today’s perspective, taken as very
broad generalizations of de Finetti’s theory.

De Finetti’s reaction to Smith’s paper was essentially negative and, as
he explained, led to the addition of two short sections in the final version of
[16]. We discuss de Finetti’s reactions below.

As for Williams’ paper, de Finetti read it in a later phase of his activity,
the mid-seventies, and we are aware of no written comments on it. However
Williams commented on this very point many years later, in an interview
published in The SIPTA Newsletter, vol. 4 (1), June 2006. In his words:

De Finetti himself thought the 1975 paper was too closely con-
nected to “formal logic” for his liking, which puzzled me, though
he had expressed interest and pleasure in the earlier 1974 paper
linking subjective probability to the idea of the indeterminacy of
empirical concepts.

Throughout his career de Finetti proposed original ideas that were often out
of the mainstream. For example, he championed the use of finite additivity as
opposed to the more restrictive, received theory of countably additive prob-
ability, both regarding unconditional and conditional probability. Criticism
from the prevailing measure theoretic approach to probability often dubbed
finitely additive subjective probability as arbitrary. It might have been too
hard to spread the even more innovative concepts of imprecise probabilities.
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This may be a motivation for de Finetti’s caution towards imprecise proba-
bilities. It certainly contributes to our understanding why Williams’ report
[51] was published [52] only in 2007, more than thirty years later. (See [46].)

2.2. Imprecision in de Finetti’s Papers

In very few places in his large body of written work does de Finetti discuss
imprecise probabilities, and nowhere does he do so exclusively. Discussions
of some length appear in [14, 16, 17]. De Finetti’s basic ideas on impreci-
sion appear already in the philosophical, qualitative essay [14] Probabilismo.
Saggio critico sulla teoria delle probabilità e sul valore della scienza, which
de Finetti quotes in his autobiography in [19] as the first description of his
viewpoint on probability. In this paper, he acknowledges that an agent’s
opinion on several events is often determined up to a very rough degree of
approximation, but observes that the same difficulty arises in all practical
problems of measuring quantities (p. 40). He then states (p. 41) that un-
der this perspective probability theory is actually perfectly analogous to any
experimental science:

In experimental sciences, the world of feelings is replaced by a
fictitious world where quantities have an exactly measurable value;
in probability theory, I replace my vague, elusive mood with that
of a fictitious agent with no uncertainty in grading the degrees of
his beliefs.

Continuing the analogy, shortly after (p. 43) he points out a disadvantage of
probability theory, that

measuring a psychological feeling is a much more vaguely deter-
mined problem than measuring any physical quantity,

noting however that just a few grades of uncertainty might suffice in many
instances. On the other hand, he observes that the rules of probability are
intrinsically precise, which allows us to evaluate the probability of various
further events without adding imprecision.

In an example (p. 43, 44, abridged here), he notes that P (A ∧ B) =
P (A|B)P (B) is determined precisely for an agent once P (A|B) and P (B)
are specified. By contrast, when starting from approximate evaluations like
P (B) ∈ [0.80, 0.95] and P (A|B) ∈ [0.25, 0.40], imprecision propagates. Then
P (A∧B) can only be said to lie in the interval [0.80 ·0.25 = 0.20, 0.95 ·0.40 =
0.38].
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If B is the event: the doctor visits an ill patient at home, and A: the
doctor is able to heal the ill patient, approximate evaluations – he notes –
are of little use, as they do not let us conclude much more than the following
merely qualitative deduction, which we paraphrase: If it is nearly sure that
the doctor will come, and fairly dubious that he can heal his patient, then it
is slightly more dubious that the doctor comes and heals his patient.

Further, de Finetti notes that probabilities can often be derived from
mere qualitative opinions. For instance, in many games the atoms of a finite
partition are believed to be equally likely. This remark suggests a reflec-
tion on the role of qualitative uncertainty judgements in de Finetti’s work.
Interestingly, he displayed a different attitude towards this definitely more
imprecise tool than to imprecise probabilities. In fact, in the same year 1931
he wrote Sul significato soggettivo della probabilità [15], discussing rational-
ity conditions, later known as de Finetti’s conditions, for comparative (or
qualitative) probabilities, showing their analogy with the laws of numerical
probability. This paper pointed out what became an important research
topic, concerning existence of agreeing or almost agreeing probabilities for
comparative probability orderings. (See [21] for an excellent review.)

The ideas expressed in [14] were not substantially modified in later writ-
ings. For instance, in [16], p. 95, de Finetti and Savage quote E. Borel as
sharing their thesis, that

the vagueness seemingly intrinsic in certain probability assess-
ments should not be regarded as something qualitatively different
from uncertainty in any quantities, numbers and data one works
with in applied mathematics.

The jointly authored 1962 paper [16], Sul modo di scegliere le probabilità
iniziali, adds some arguments to de Finetti’s ideas on imprecise probabilities
while discussing Smith’s then recently published paper [41]. Recall that
Smith proposed a modification of de Finetti’s betting scheme, introducing a
one–sided lower probability P (A) and a one–sided upper probability, P (A) ≥
P (A), for an eventA, rather than a single two–sided probability, as we explain
next. In Smith’s approach, the agent judges a bet on A (winning 1 if and only
if A obtains) at a price p < P (A) to be favorable over the status quo, which
has 0 payoff for sure. Such a favorable gamble has a positive lower expected
value, hence greater than 0. And for the same reason the agent prefers to
bet against A (paying 1 if and only if A obtains) in order to receive a price
p > P (A) over the status quo. For prices p between the lower and upper
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probability, P (A) ≤ p ≤ P (A), the agent is allowed to abstain from betting
and remain with the status quo.

In de Finetti’s theory, by contrast, the agent is obliged to give one two-
sided probability P (A) for betting on/against the event A. At the fair price
p = P (A) the de–Finetti–agent is indifferent between a gamble on/against A
and abstaining, and may either accept or reject the bet. For prices p < P (A)
the de–Finetti–agent judges a bet on A favorable, etc. Thus, de Finetti’s
theory is the special case of Smith’s theory when P (A) = P (A) = P (A),
modulo the interpretation of how the agent may respond to the case of a fair
bet.

After expressing perplexity about the idea of avoiding stating one exact
fair value P (A) by introducing an indecision interval I = [P (A), P (A)], with
two different exact (one-sided) values as endpoints, de Finetti and Savage
focus on two questions: first, existence of the indecision interval I and second,
consistency of the agent’s betting using the interval I.

As for the first question, de Finetti and Savage agree that nobody is
actually willing to accept all of the bets required according to the idealized
version of de Finetti’s coherence principle. They concede that the betting
model introduced by de Finetti in order to give an operational meaning to
subjective probability requires that an idealized, rational agent is obliged to
have a real–valued probability P (A) and, thus, to accept bets at favorable
odds – betting on A for any price less than P (A) and betting against A
for any price greater than P (A).1 The real agent is committed to behave
according to the idealized theory in hypothetical circumstances where he/she
has reflected adequately on the problem. In other words, de Finetti’s opinion,
expressed on this point also in other papers, seems to be that the betting
scheme should not be taken literally. Rather it is a way of defining the
subjective probability concept in idealized circumstances. Hence, intervals
of indecision exist in practice, but only where the real decision agent has not
thought through the betting problem with the precision asked of the idealized
agent.

As for the second question, de Finetti and Savage argue that, rather than
allowing the indecision interval, from the perspective of coherence it may be
better to employ the precise two–sided probability P = (P + P )/2. They

1As recalled in [16], such agents were termed Stat Rats (by G.A. Barnard) in the
discussion of [41].
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report the following intriguing example as evidence for their view.

Example (de Finetti and Savage, 1962, p. 139). An agent may
choose whether to buy or not any combination of the following 200 tickets
involving varying gambles on/against event A. The first 100 tickets are
offered for prices, respectively, of 1, 2,. . ., 100 Euros2 and each one pays
100 Euros if event A occurs, and 0 otherwise. The remaining 100 tickets are
offered, respectively, at the same prices but on the complementary event, Ac.
Each of these 100 tickets pays 100 Euros if Ac occurs and 0 otherwise. If
the agent assesses a two–sided personal probability for A as in de Finetti’s
theory, e.g., P (A) = 0.63, he/she will maximize expected value by buying
the first 63 tickets on A with prices 1,. . ., 63, for a combined price 1 + 2 +. . .
+ 63 = 2016 Euros, and buying the first 37 tickets on Ac for a combined
price 1 + 2 +. . . + 37 = 703 Euros. (The agent is indifferent about buying
the 63rd ticket from the first group and, likewise, the 37th ticket from the
second group.) The agent’s total expense for the 100 tickets, then, is 2719
Euros. The agent gains 6300− 2719 = 3581 Euros if A occurs; he/she gains
981 Euros otherwise, when Ac occurs.

Suppose, instead the agent fixes a lower probability P (A) = 0.53 and an
upper probability P (A) = 0.73, as allowed by Smith’s theory. De Finetti
and Savage interpret this to mean that the Smith-agent will buy only the
first 53 tickets for A and only the first 27 tickets for Ac – those gambles that
are individually (weakly) favorable. Then the Smith–agent will gain only
5300− 1809 = 3491 Euros if A occurs, and will gain only 2700− 1809 = 891
Euros if Ac occurs. Their conclusion is that in this decision problem it is
better for the agent to assess the real–valued, two–sided probability 0.63 =
P (A) = (P (A) + P (A))/2 than to use the interval I = [0.53, 0.73]. The
decision maker’s gain increases by 90 Euros, whatever happens, using this
two-sided, de Finetti–styled probability. We respond to this example in the
next section. �

De Finetti and Savage continue their criticism of IP theory on pp. 140
÷ 144 of [16]. To our thinking, the most interesting argument they offer
is perhaps that imprecision in probability assessments does not give rise to

2We introduce an anachronism, here and in later examples, updating the monetary
unit to 2012.
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a new kind of uncertainty measure, but rather points out an incomplete
elicitation by a third party and/or even incomplete self–knowledge. They
write,

Even though in our opinion they are not fit for characterizing a
new, weaker kind of coherent behaviour, structures and ideas like
Smith’s may allow for important interpretations and applications,
in the sense that they elicit what can be said about a behaviour
when an incomplete knowledge is available of the opinions upon
which decisions are taken.

They continue with a clarifying example.

What is the area of a triangle with largest side a and shortest side
b? Any S such that S ≤ S ≤ S, with S: area of the triangle with
sides (a, b, b), S: area of the triangle with sides (a, a, b). This does
not mean: there exists a triangle whose area is indeterminate (S:
lower area, S: upper area); every triangle has a well determined
area, but we might at present be unable to determine it for lack
of sufficient information.

In the Appendix of [17], while mainly summarizing ideas on imprecise
probabilities already expressed in [14, 16], de Finetti adds other examples
supporting the same thesis. One is particularly interesting because it does not
resort to the analogy between probabilities and other experimental measures
but involves his Fundamental Theorem of Prevision. As well known, that
theorem ensures that, given a coherent probability function P (·) defined on
an arbitrary set of events D, all of its coherent extensions that include a
probability for an additional event E /∈ D belong to a non-empty closed
interval IE = [P (E), P (E)]. This interval IE of potential (coherent) values
for P (E) is defined by analogy with how one may extend a measure µ to give
a value for a non-measurable set using the interval of inner and outer measure
values. In de Finetti’s theorem, the interval IE arises by approximations to
E (from below and from above) using events from the linear span of D. But,
de Finetti argues, the fact that prior to the extension, we can only affirm
about P (E) that it belongs to IE rather than having a unique value

does not imply that some events like E have an indeterminate
probability, but only that P (E) is not uniquely defined by the start-
ing data we consider.
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De Finetti’s thinking about imprecise personal probability is unchanged
from his early work.3 In his classic ([36], p. 58) Savage quotes de Finetti’s
[18] view on this question.

The fact that a direct estimate of a probability is not always possi-
ble is just the reason that the logical rules of probability are useful.

Revealing of Savage’s subsequent thinking on this question of existence of
unsure, or imprecise (personal) probabilities is the footnote on p. 58, added
for the 1972 edition of [36], where Savage teases us with these guarded words.

One tempting representation of the unsure is to replace the per-
son’s single probability measure P by a set of such measures, es-
pecially a convex set. Some explorations of this are Dempster
(1968), Good (1962), and Smith (1961).

3. Rejoinder from the Perspective of 2011

Many of the objections raised by de Finetti (and others) towards the
use of imprecise probabilities have been discussed at length elsewhere. (See
especially [48], Secs. 5.7, 5.8, 5.9). Of course, some recently formulated
arguments in favor of IP, e.g., some relating to group decision making [39]
or IP models for frequency data [12], were not anticipated by de Finetti.
Here, we offer brief comments, including responses to the challenges against
IP raised in the previous section.

The first of de Finetti’s arguments supporting precise rather than impre-
cise probabilities is roughly that – barring e.g., Quantum Mechanical issues –
ordinary theoretical quantities that are the objects of experimental measure-
ment are precise. In practice however, when the process for eliciting a precise
personal probability is not sufficiently reliable, impractical, or too expensive,
the use of imprecise probabilities seems appropriate. By modeling the elici-
tation process, e.g., by considering psychometric models of introspection, we
may be able to formalize the degree of imprecision of the assessment [31]; a
first, intuitive measure of imprecision is of course the difference P (A)−P (A).

3Even in the commented collection [20] of the conferences de Finetti held at the Italian
Institute for Advanced Mathematics in 1979, edited and published posthumously by Mura,
the editor’s Note 9, p. 43, concludes that “De Finetti has opposed this [the imprecise prob-
ability] framework by dubbing it a useless and illusory attempt to eliminate the inevitable
idealizations embedded in any mathematical scheme”.
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De Finetti hits the mark with his second observation, basically that infer-
ences with imprecise probabilities may be highly imprecise. This is unques-
tionably true, but there are different levels: highly imprecise measures like
possibilities and necessities typically ensure many vacuous inferences [50],
while standard, less imprecise instruments are (now) available in other in-
stances, e.g., the Choquet integral for 2–monotone measures [5], the imprecise
Dirichlet model [49], etc.. Moreover, specific independence or irrelevance as-
sumptions, as well as other dependance hypotheses like exchangeability, can
really constrain imprecise probability values, see among others [4, 6, 7, 44].

De Finetti and Savage’s [16] example, which we summarized in Section
2.2, merits several responses. First, it is not clear what general claim they
make. Are they suggesting that a decision maker who uses Smith’s lower and
upper IP betting odds always makes inferior decisions compared with some
de Finetti–styled decision maker who uses precise betting odds but has no
other advantage – no other special information? Is their claim instead that
sometimes the IP decisions will be inferior? What is their objection?

De Finetti and Savage’s example uses particular values for P, P , and P ,
combined with a controversial (we think unacceptable) interpretation of how
the IP decision maker chooses in their decision problem. It is not difficult to
check that the same conclusion they reach may be achieved by varying the
three quantities P, P , and P subject to the constraint that P < P < P and
these belong to the set {0, 1/100, 2/100, . . . , 1} while retaining the same
ticket prices, and the same seemingly myopic decision rule for determining
which tickets the IP decision maker purchases. That is, it appears to us that
what drives de Finetti and Savage’s result in this example is the tacit use of
a decision rule that is invalid with sets of probabilities but which is valid in
the special case of precise probabilities.

We think they interpret Smith’s lower and upper betting odds to mean
that when offered a bet on or against an event A at a price between its lower
and upper values, the IP decision maker will reject that option regardless
what other (non-exclusive) options are available. That is, we think they
reason that, because at odds between the lower and upper probabilities it is
not favorable to bet either way on A compared with the one option to abstain,
therefore the IP decision maker will abstain, i.e. not buy such a ticket in their
decision problem.

The familiar decision rule to reject as inadmissible any option that fails to
maximize expected utility reduces to pairwise comparisons between pairs of
acts when the agent uses a precise probability. That is, in the example under
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discussion where utility is presumed to be linear in the numeraire used for the
gambles4, a de Finetti–styled decision maker will maximize expected utility
by buying each ticket that, by itself, has positive expected value: Buy each
ticket that in a pairwise comparison with abstaining is a favorable gamble
and only those. But this rule is not correct for a decision maker who uses
sets of probabilities. De Finetti and Savage’s conclusion about which tickets
the IP decision maker will buy is incorrect when she/he uses an appropriate
decision rule.

As well known, there is continuing debate about decision rules for use with
an IP theory. However, for the case at hand, we think it is non-controversial
that the IP decision maker will judge inadmissible any combination of tickets
that is simply dominated in payoff by some other combination of tickets.
That is, in the spirit of de Finetti’s coherence condition, particularly as he
formulates it with Brier score, the decision maker will not choose an option
when there is a second option available that simply dominates the first. Then,
in this example, it is permissible for such an IP decision maker to buy the very
same combination of tickets as would any de Finetti–styled decision maker
who has a precise personal probability for the event A. That is because,
in this finite decision problem, all and only Bayes–admissible options are
undominated. Thus, it is impermissible for the IP decision maker to buy
only the 80 = (53 + 27) tickets that de Finetti and Savage allege will be
purchased.

Call House the vendor of the 200 tickets. House is clearly incoherent.
In fact, an agent can make arbitrage without needing to consider her/his
uncertainty about the event A: buying the first 50 tickets for A and the first
50 for Ac produces a sure gain of 2450 Euros! See [40] for different indices
for the degree of incoherence displayed by House, what strategies maximize
the sure gains that can be achieved against House, and how these are related
to different IP models for the events in question.

There is a related point about IP-coherence that we think is worth em-
phasizing. Consider making a single bet in favor of A. If the decision maker
adopts a precise probability P (A), her/his gain per Euro staked on a bet on
A will be G = A−P (A). However, if the decision maker’s judgment is unsure

4Linearity of utility is no real restriction, because coherence is equivalent to constrained
coherence, where an arbitrary upper bound k > 0 is set a priori on the agent’s gains/losses
in absolute value (see [34], Sec. 3.4). Just choose k such that the utility variation is to a
good approximation linear.
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and she/he uses Smith’s lower betting odds with P (A) < P (A), her/his gain
increases to G = A−P (A) > G. It is true that in this latter case the decision
maker will abstain from betting when the price for A is higher than P and
lower than P , and provided there are no other options to consider. But this
results only in the loss of some additional opportunities for gambling. There
is no loss of a sure gain.

The role of the Fundamental Theorem in relation to IP theory is also
worth discussing. Let us accept de Finetti’s interpretation of the interval IE
as giving all coherent extensions of the decision maker’s current probability
P (·), defined with respect to events in the set D, in order to include the new
event E. Suppose, however, that we consider extending P to include a second
additional event F as well. To use the Fundamental Theorem to evaluate
probability extensions for both E and F we must work step–by–step. Extend
P (·) to include only one of the two events E or F using either interval IE or
IF defined with respect to the set D. For instance, first extend P to include
a precise value for P (E) taken from IE. Denote the resulting probability
PE(·) defined with respect to the set D∪ {E}. Then iterate to extend PE(·)
to include a precise value for PE(F ). Of course, the two intervals IF and IEF
usually are not the same. We state without demonstration that, nonetheless,
if the step–by–step method allows choosing the two values P (E) = c and
PE(F ) = d, then it is possible to reverse the steps to achieve the same pair,
P (F ) = d and P F (E) = c. Then the order of extensions is innocuous.

If instead we interpret the starting coherent probability P (defined on
the linear span of D) as a special coherent lower probability, and look for a
lower probability which coherently extends it, we can avoid the step–by–step
procedure, simply by always choosing the lower endpoint from the intervals
based on the common set D and use their values as 1-sided lower probabilities
(in the two–event example, choosing the lower endpoints of the intervals IE
and IF as lower probability assessments for, respectively, E and F ). We
obtain what Walley [48] calls the natural extension of P , interpreted as a
coherent lower probability (actually, it is even n–monotone) on all additional
events. The correctness of such a procedure depends also on the transitivity
property of the natural extension.

There is a second consideration relevant to de Finetti’s preferred inter-
pretation of the interval IE from the Fundamental Theorem relating to IP
theory, which is particularly relevant in the light of Levi’s [30] distinction be-
tween imprecision and indeterminacy of interval–valued probabilities. Levi’s
distinction is illustrated by Ellsberg’s well known challenge [11].
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In Ellsberg’s puzzle [11] the decision maker faces decisions under risk
and decisions under uncertainty simultaneously. The decision maker con-
templates two binary choices: Problem I is a choice between two options
labeled 1 and 2, and Problem II is a choice between two options labeled 3
and 4. The payoffs for these options are determined by the color of a ran-
domly drawn chip from an urn known to contain only red, black, or yellow
chips, cf. Table 1.

Table 1: Data for Ellsberg’s puzzle

The chip drawn from the urn is

RED BLACK YELLOW

option 1 1,000 Euros 0 Euros 0 Euros

option 2 0 Euros 1000 Euros 0 Euros

option 3 1,000 Euros 0 Euros 1,000 Euros

option 4 0 Euros 1,000 Euros 1,000 Euros

In Problem I, option 1 pays off 1,000 Euros if the chip drawn is red, 0
Euros otherwise, i.e. if it is black or yellow. Option 2 pays off 1,000 Euros
if the chip drawn is black, 0 Euros otherwise, i.e, if the chip is red or yellow.
In Problem II, option 3 pays off 1,000 Euros if the chip drawn is either red
or yellow, 0 if it is black. Option 4 pays off 1,000 Euros if the chip drawn
is black or yellow, 0 Euros if it is red. In addition, the urn is stipulated to
contain exactly 1/3 red chips, with unknown proportions of black and yellow
other than that their total is 2/3 the contents of the urn. Thus, under the
assumptions for the problem, options 1 and 4 have determinate risk: they are
just like a Savage gamble with determinate (personal) probabilities for their
outcomes. However Ellberg’s conditions leave options 2 and 3 as ill–defined
gambles: the personal probabilities for the payoffs are not determined.

Across many different audiences with varying levels of sophistication, the
modal choices are option 1 from Problem I and option 4 from Problem II.
Assuming that the agent prefers more money to less, that there is no moral
hazard relating the decision maker’s choices with the contents of the urn, and
that the choices reveal the agent’s preferences, there is no expected utility
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model for the modal pattern, 1 over 2 and 4 over 3.
Table 1 illustrates how these preferences violate Savage’s [36] Sure-Thing

Postulate, P2. Since options 1 and 2 have the same outcome (0 Euros) if
the chip draw is yellow, by Expected Utility considerations, an agent with
precise preference has those preferences depend solely on the consequences
of these two options in the first two states, when the chip drawn is either red
or black. Likewise with a comparison between options 3 and 4 : they have
the same outcome (1,000 Euros) if the chip draw is yellow. However, options
1 and 3 have the same payoff when the chip drawn is red (1,000 Euros), and
also when it is black (0 Euros). Similarly for options 2 and 4. Hence, by
Expected Utility considerations (and in accord with Savage’s Postulate P2 )
an agent with precise preferences cannot strictly prefer option 1 over option
2 and strictly prefer option 4 over option 3. Given that the chip drawn is
not yellow, options 1 and 3 are the same, and options 2 and 4 are the same.

In a straightforward IP–de–Finetti representation of this puzzle, the de-
cision maker has a precise probability for the events {red, black or yellow}:
P (red) = 1/3, P (black or yellow) = 2/3. But the agent’s uncertainty about
black or yellow is represented by the common intervals Iblack = Iyellow =
[0, 2/3]. Under these circumstances the agent’s imprecise probabilities do not
dictate the choices for either problem. However, if after reflection the agent
decides for option 1 over option 2 in Problem I, then (as in the Fundamental
Theorem) this corresponds to an extension of P (·) where now P (black) < 1/3.
But then P (yellow) > 1/3 and option 3 has greater expected utility than op-
tion 4 relative to this probability extension. Likewise, if the agent reflects
first on Problem II and decides for option 4 over option 3, this corresponds to
an extension of P (·) where now P (yellow) < 1/3. Then in Problem I option
2 has greater expected utility than option 1.

In short, under what we understand to be de Finetti’s favored interpreta-
tion of the Fundamental Theorem, the modal Ellsberg choices are anomalous.
They cannot be justified even when the agent uses the uncertainty intervals
from the Fundamental Theorem. Levi calls this a case of imprecise probabil-
ity intervals. Under this interpretation the agent is committed to resolving
her/his uncertainty with a coherent, precise probability.

By contrast, if the agent uses the two intervals, Iblack = Iyellow = [0, 2/3],
to identify a set of probabilities for the two events, then relative to this set
neither option in either Problem is ruled out by considerations of expected
utility. That is, in Problem I, for some probabilities in the set, option 1 has
greater expected utility than option 2, and for other probabilities in the set
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this inequality is reversed. Likewise with the two options in Problem II. If the
non–comparability between options by expected utility is resolved through an
appeal to lower expected utility, e.g., as a form of security, then in Problem I
the agent chooses option 1 and in Problem II the agent chooses option 4. This
is what Levi means by saying that the decision maker’s IP is an indeterminate
(not an imprecise) probability. With indeterminate probability, the agent is
not committed to resolving uncertainty with a precise probability prior to
choice.

4. De Finetti’s Theory in Imprecise Probabilities

Let us repeat a simple fact. Notwithstanding what we see as de Finetti’s
mostly unsupportive opinions on imprecise probabilities, in the sense of IP as
that is used by many nowadays, our co-researchers in this area find it appro-
priate to refer to his work in the development of their own. One reason for
this is that many IP researchers use aspects of de Finetti’s work on personal
probability which often are in conflict with the more widely received but less
general, classical theory, associated with Kolmogorov’s measure theoretic ap-
proach.

Take for instance de Finetti’s concept of a coherent prevision P (X) of
a (bounded) random quantity X, which is a generalization of a coherent
probability. That special case obtains when X is the indicator function for
an event, and then a prevision is a probability.

A prevision may be viewed as a finitely additive expectation E(X) of X.
But there are non-trivial differences between de Finetti’s concept of prevision
and the more familiar concept of a mathematical expectation as that is de-
veloped within the classic measure theoretic account. In order to determine
the classical expectation of a random variable X, we first have to assess a
probability for the events {ω : X(ω) = x}, or at least assess a cumulative
distribution function. In uncountable state spaces, common with familiar
statistical models, the classical theory includes measurability constraints im-
posed by countable additivity. But this is not at all necessary for assessing
a prevision, P (X), which may be determined directly within de Finetti’s
theory free of the usual measurability constraints. The difference may seem
negligible, but it becomes more appreciable when considering previsions for
several random quantities at the same time, and by far more so when passing
to imprecise previsions, where additivity in general no longer applies. This
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is an illustration of how de Finetti’s foundational ideas can become more
important in IP theory than they are even in traditional probability theory.

The problem reiterates within the theory of conditional expectations,
magnified by the fact that finitely additive conditional expectations do not
have to satisfy what de Finetti called conglomerability, first in his 1930 pa-
per Sulla proprietà conglomerativa delle probabilità subordinate [13]. Assume
that P (·) is a coherent unconditional probability. Let π = {h1, . . .} be a denu-
merable partition, and let {P (·|hi) : i = 1, . . .} be a set of corresponding co-
herent conditional probability functions for P , given each element of π. With
respect to an event E, definemE = infh∈π P (E|h), andME = suph∈π P (E|h).
These conditional probabilities for event E are conglomerable in π provided
that P (E) ∈ [mE,ME]. Schervish et al. [38] establish that each finitely but
not countably additive probability fails to be conglomerable for some event
E and denumerable partition π. Also, they identify the greatest lower bound
for the extent of non–conglomerability of P , where that is defined by the
supremum difference between the unconditional probability P (E) and the
nearest point to the interval [mE,ME], taken over all denumerable partitions
π and events E.

The treatment of conglomerability in IP is still controversial. While Wal-
ley [48] imposes some conglomerability axioms to his concepts of coherence
for conditional lower previsions, Williams’ more general approach does not.
In Walley’s words ([48], p. 644)

Because it [. . .] does not rely on the conglomerative principle,
Williams’ coherence is also a natural generalization of de Finetti’s
(1974) definition of coherence.

See [33], Secs. 3.4, 4.2.2 for a further discussion of [13], Williams’ coherence
and of some arguments in favor/against conglomerativity in IP theory.

Also de Finetti’s use of a generalized betting scheme to define coher-
ent previsions serves as an example for several subsequent variants, which
underly many uncertainty measures. Examples include coherent upper and
lower previsions [51, 48], convex previsions [34], and capacities ([1], Sec. 4).
Moreover, in all such instances this approach based on de Finetti’s theory
of previsions provides vivid, immediate interpretations of basic concepts and
often relatively simple proofs of important results.

Another issue, which was our focus in the previous section, concerns de
Finetti’s attention to extension problems, i.e. to the existence of at least
one coherent extension of a coherent prevision, defined on an arbitrary set
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of (bounded) variables. Walley [48] used this idea in the realm of imprecise
probabilities to define several useful notions: a natural extension; a regular
extension; an independent extension, etc. For instance, a natural extension
is the largest, i.e., “least committal” coherent IP extension.

In general, research in IP theory exposes new facets of probability con-
cepts already discussed and sometimes not quite fixed by de Finetti. An
illustration is with the notion of stochastic independence, which de Finetti
found unconvincing in its classical identification with the factorization prop-
erty, but which he left somewhat undeveloped in his own work. In [17] he
gives an epistemically puzzling example of two random quantities that are
functionally dependent and stochastically independent according to the fac-
torization property. Problems for a theory of independence arise especially
when conditioning on events of extreme (0 or 1) probability. For instance,
Dubins’ version [10] of de Finetti’s theory leads to an asymmetric relevance
relation. The situation is more complex in the IP framework, and de Finetti
would perhaps be surprised at the variety of independence concepts that have
been developed. (See, e.g., [7, 8, 43, 45]).

De Finetti discovered important connections between independence and
exchangeability as reported in his Representation Theorem, 1937. IP gener-
alizations are being developed, e.g., [6]. Soon, we will likely see IP general-
izations of partial exchangeability along the same lines. In yet other settings,
IP methods have been employed to achieve advances in probability problems
to which de Finetti himself contributed [32].

5. Conclusions

Probability does not exist is one of de Finetti’s most striking mottoes,
reported also on the memorial tablet at his birthplace in Innsbruck, Austria.
We may possibly interpret it as a statement that probability is not something
intrinsic in the laws of nature, but rather a concept of the human mind,
developed for reasoning under uncertainty. In de Finetti’s view imprecise
probability seems not to exist in a stronger sense, not even as a really worthy
tool for studying uncertainty. Yet the recent developments do not quite
confirm his attitude. Thinking of this, we close our comments with this
metaphor, which will be entirely familiar to any parent. You raise your
children with an eye for the day when each becomes an independent agent.
Sometimes, however, contrary to your advice, one embarks on what you fear
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is an ill conceived plan. When to your great surprise the plan succeeds, does
not that offspring then make you a very proud parent?!
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nate. Rendiconti R. Istituto Lombardo di Scienze e Lettere 43:339–343,
1930.

[14] B. de Finetti. Probabilismo. Saggio critico sulla teoria delle probabilità e
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